The Effect of Co-Firing Biomass and Coal on the Performance of SCRs

Fred Glaser
Assistant Director, Office of Advanced Research
U.S. Department of Energy

October 25, 2002

Center for Biomass Utilization Grand Forks, North Dakota

EERC Center for Biomass Utilization

- Encompasses over \$4 million of activities at the EERC
- Biomass-coal cofiring and impacts on emissions and operation
- Biomass gasification for energy and products
- Utilization of biomass in district energy sources
- Conversion of biomass to "green" chemicals
- Ethanol production and environmental end-points
- Biomass-derived fly ash utilization.

Research Directions in Biomass Utilization

- Thermal and fast pyrolysis pretreatment of biomass for ethanol
- Fermentation biorefinery methods for high-value chemicals
- Hydrogen production from biomass
- Gasification for syngas
 - Conversion of product gas and char to energy in gas turbines, reciprocal engines, and steam boilers
 - Conversion of product gas to ethanol and high-value chemicals
 - Increased efficiency and easier capture of CO₂
 - Hydrogen for fuel cells
- Integrated systems: ethanol or biodiesel production, district energy, products and energy, and colocation

Types of Biomass

- Wastes and residues
 - Wood: forest or tree trimmings, sawdust, demolition wood, crates, railroad ties
 - Agricultural residues:
 wheat straw, rice straw,
 potato and beet residue,
 bagasse, and corn stover
 - Animal wastes: litter and manure
 - MSW
- Agricultural energy crops: switchgrass, hybrid poplar and willows, bamboo, and elephant grass

Benefits and Importance of Biomass Utilization

- Renewable and alternative
- Decreases greenhouse gas accumulation
- Increases national security and decreases world tensions
- Reduces wastes: landfill space, terrestrial pollution, and reduced methane from decay
- Economic impacts on agricultural, energy, and other industrial economies
- Environmental impacts: air toxic emissions, biodegradable products

Background

- Biomass and low-rank coals often contain larger relative quantities of alkali and alkaline-earth elements (i.e., potassium, sodium, calcium, and phosphorus) in addition to moderate sulfur levels.
- These constituents have the potential to impair the operation of SCR systems by the formation of sulfate- or phosphatebased deposits on catalyst surfaces, leading to higher NOx emissions and potentially high ammonia slip.
- Biomass can also contain elements such as arsenic which can poison catalysts

SCR Biomass Project Objectives

- Determine potential for blinding of selective catalytic reduction (SCR) catalysts for biomass-coal cofiring
- Determine mechanisms of SCR blinding specific to biomass components

Issues Involving Biomass and SCR

- Potassium: chlorides, sulfates, and perhaps phosphates
- Calcium: similar to low rank PRB with potential sulfates and phosphates
- Organically dispersed K and Ca and very fine silica coupled with alkali and sulfur in coals may create a significant flux of fine particulate in SCR
- Coal mineral components may interact with and immobilize some of the volatile potassium.

Project Work Plan

- Selection of utility boilers for testing
- Biomass resource acquisition and characterization
- Bench-scale biomass SCR blinding under separate DOE project
- Four to six months of testing for SCR blinding in two full-scale utility boiler units
 - Skid-mounted test rigs
 - Two different boilers burning different coals and different biomass types
- Determine root causes and mitigation measures for blinding deposits

Estimated Project Cost

- Multiclient consortium with U.S. DOE joint venture funding leverages funds (lots of research for a small investment of a participating sponsor)
- \$270,000 Industry (\$60,000 per industry sponsor)
- \$180,000 U.S. DOE
- Total Project Budget \$450,000

Project Just Getting Underway! Still Time to Join!

Contact: Bruce Folkedahl

Energy & Environmental Research Center (701) 777-5243

Bfolkedahl@undeerc.org

